The SC15 protein of Schizophyllum commune mediates formation of aerial hyphae and attachment in the absence of the SC3 hydrophobin.

نویسندگان

  • L G Lugones
  • J F de Jong
  • O M H de Vries
  • R Jalving
  • J Dijksterhuis
  • H A B Wösten
چکیده

Disruption of the SC3 gene in the basidiomycete Schizophyllum commune affected not only formation of aerial hyphae but also attachment to hydrophobic surfaces. However, these processes were not completely abolished, indicating involvement of other molecules. We here show that the SC15 protein mediates formation of aerial hyphae and attachment in the absence of SC3. SC15 is a secreted protein of 191 aa with a hydrophilic N-terminal half and a highly hydrophobic C-terminal half. It is not a hydrophobin as it lacks the eight conserved cysteine residues found in these proteins. Besides being secreted into the medium, SC15 was localized in the cell wall and the mucilage that binds aerial hyphae together. In a strain in which the SC15 gene was deleted (DeltaSC15) formation of aerial hyphae and attachment were not affected. However, these processes were almost completely abolished when the SC15 gene was deleted in the DeltaSC3 background. The absence of aerial hyphae in the DeltaSC3DeltaSC15 strain can be explained by the inability of the strain to lower the water surface tension and to make aerial hyphae hydrophobic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides.

Class I hydrophobins function in fungal growth and development by self-assembling at hydrophobic-hydrophilic interfaces into amyloid-like fibrils. SC3 of the mushroom-forming fungus Schizophyllum commune is the best studied class I hydrophobin. This protein spontaneously adopts the amyloid state at the water-air interface. In contrast, SC3 is arrested in an intermediate conformation at the inte...

متن کامل

A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom).

Aerial mycelium and hyphal strands of Agaricus bisporus, strain U1, exhibited a rodlet pattern at their surfaces characteristic for assembled class I hydrophobins. An SDS-insoluble/trifluoroacetic-acid-soluble fraction from strands was found to contain one abundant protein with an apparent molecular mass on gel of 19 kDa. Two sequences for this protein (ABH3), typical of class I hydrophobins, c...

متن کامل

How a fungus escapes the water to grow into the air

Fungi are well known to the casual observer for producing water-repelling aerial moulds and elaborate fruiting bodies such as mushrooms and polypores. Filamentous fungi colonize moist substrates (such as wood) and have to breach the water-air interface to grow into the air. Animals and plants breach this interface by mechanical force. Here, we show that a filamentous fungus such as Schizophyllu...

متن کامل

Creating Surface Properties Using a Palette of Hydrophobins

Small secreted proteins called hydrophobins play diverse roles in the life cycle of filamentous fungi. For example, the hydrophobin SC3 of Schizophyllum commune is involved in aerial hyphae formation, cell-wall assembly and attachment to hydrophobic surfaces. Hydrophobins are capable of self-assembly at a hydrophilic-hydrophobic interface, resulting in the formation of an amphipathic film. This...

متن کامل

Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins.

The functional relationship between fungal hydrophobins was studied by complementation analysis of an mpg1(-) gene disruption mutant in Magnaporthe grisea. MPG1 encodes a hydrophobin required for full pathogenicity of the fungus, efficient elaboration of its infection structures and conidial rodlet protein production. Seven heterologous hydrophobin genes were selected which play distinct roles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2004